返回首页

  俄国人尤利耶夫另辟捷径,提出了利用尾桨来配平旋翼反扭矩的设计方案并于1912年制造出了试验机。这种单旋翼带尾桨式直升机成为至今最流行的形式,占到世界直升机总数的95%以上。

 

  此外,还有其他一些先驱者也为直升机的诞生做出了贡献 包括丹麦人 E11eham—merl913年制造的直升机。

  经过20世纪初的努力探索,为直升机发展积累了可贵的经验并取得显著进展,有多架试验机实现了短暂的垂直升空和短距飞行,但离实用还有很大距离 当时主要的障碍有两个:一是发动机的功率/重量之比太低,而直升机对此指标特别敏感;二是旋翼技术过于原始,不能实现对直升机的有效控制,而且振动非常严重。

  飞机工业的发展,使航空发动机的性能迅速提高,为直升机的成功提供了重要条件。旋翼技术的第一次突破,应归功于西班牙人Ciervao他为了创造“不失速”的飞机以解决固定翼飞机的安全问题,采用自转旋翼代替机翼,发明了旋翼机。他在办定翼上采用挥舞铰和周期变距,从而使旋翼能在垂直飞行和前进飞行中产生稳定的升力,又能产生俯仰和滚转操纵力矩。旋翼技术在旋翼机上的成功应用和发展,为直升机的诞生提供了另一个重要条件。 到30年代末期,在法国、德国、美国和苏联都有直升机试飞成功,并迅速改进达到了能够实用的程度。第二次世界大战的军事需要,加速了这一进程,促使直升机发展由探索期进入实用期,直升机开始投入生产线生产。到二战结束时,德国工厂已生产了30多架直升机,美国交付的以、 R5、 R6直升机已达400多架20世纪的后半期是直升机的实用期,其主要特征,一是应用领域不断扩展,数量迅速增加,至今已有几万架直升十机服务于国民经济的各个部门和军事领域;另一特征是技术上不断有重大突破,使其应用效能和飞行性能不断改善,从而更适合于使用的拓展,而且技术上逐步趋于成熟。

   直升机进入实用期后,其重大技术进展仍然像探索期的突破点一样,是在动力装置和旋翼方面。首先是涡轴发动机的采用20世纪50年代在军用飞机上开始发展了涡喷发动机,使飞机的速度和其他性能发生了飞跃。以涡喷发动机为基础,在尾喷口气流中安置了动力涡轮将喷流的动能转换为轴功率,创造了适用于驱动直升机旋翼旋转的涡轴发动机。当代涡轴发动机的功率重量比大约是活塞式发动机的两倍,耗油率低于活塞式,而且能够制造大功率的发动机。直升机采用涡轴发动机代替活塞式发动机,不仅使直升机的飞行性能上了一个台阶,而且使制造大型或重型的、航程远、航时长的直升机成为可能,应用领域大为扩展。

  第二项重要的技术进展是采用复合材料的旋翼桨叶。早期的旋翼桨叶为木质或金属/木质混合结构060年代发展了全金属桨叶,70年代开始使用复合材料桨叶,并且很快发展和普及,不仅新机采用,一些原装有金属桨叶的现有直升机也纷纷换用。复合材料桨叶的应用,不仅显著改善了气动性能,而且使直升机的适用性更佳,维护大为简化,,而最大的优势是其疲劳性能特别好,桨叶的寿命从早期的几百小时增加到上万小时.或无限寿命。

  另一项重大进展是桨毂的结构形式。早期的全金属铰接式桨毅结构复杂,重量大且维护工作量大,而且寿命仅几百小时。在实用期的几十年中,桨毂结构不断改进,出现了许多种型式,进步点集中在用弹性铰或其他柔性元件取代金属轴承,直到近期出现了全复合材料的无轴承旋翼,达到了简化、长寿、无维护的要求,是直升机发展阶段的又一里程碑。

  当然,旋翼(桨毂、桨叶)的更新换代必然包含着空气动力学和结构动力学及其他学科领域的新成就。直升机的技术发展往往是这样:改善飞行性能的要求使得人们在空气动力学方面提出新伪方案(例如旋翼的异型桨尖),或改善使用效能的要求:推动了新结构型式的产生(例如无轴承桨毂方案)o而气动和结构设计方面的新思想会给动力学以及工艺等方面带来新的课题,解决了这些难题;气动或设计方面的新方案才能得以实用,使直升机技术提高到一个新的水平。